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SUMMARY 
The mathematical formulation of a three-dimensional shallow sea model using a modal expansion in the 
vertical is briefly described. 

The importance of the time discretization of the vertical diffusion term and bottom friction term is 
discussed in some detail. Both stability theory and numerical calculations show the importance of time 
centring or evaluating the modal form of the viscosity term at the higher time step in order to develop a 
numerically efficient algorithm. Similar analysis and calculations show that in shallow water it is essential to 
time centre or evaluate bottom friction at the higher time step. In the case of linear bottom friction it is 
shown that this condition can be readily accomplished. However, using a quadratic friction formulation 
(a more physically realistic form), this cannot be readily achieved. A new algorithm is presented whereby a 
stable solution can be obtained even in shallow water using quadratic bottom friction. 
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1. INTRODUCTION 

With increasing interest in near-coastal problems, in particular the movement of sediment (both 
as bed load and suspended load) under the action of waves and current,' there is an increasing 
demand to develop three-dimensional models which can yield accwate bed stresses and current 
profiles in shallow water regions. 

Three-dimensional models using a finite difference representation in the vertical are one 
way of approaching the problem and a range of numerical methods (e.g. Crank-Nicholson, 
Dufort-Frankel, S a ~ l ' e v ) ~ - ~  exists for centring the vertical diffusion term in time and ensuring on 
a regular grid an unconditionally stable method of solving this term. A range of transformation 
methods (e.g. kappa grid, log or log-linear compressions near the sea bed) aimed at improving the 
near-bed resolution can be found in Reference 5. Applications using a fixed grid (i.e. a grid on 
z-co-ordinates) are given by Leendertse et aL6 and a good recent general review of numerical 
modelling methods is given in Reference 7. 

Alternatives to using a finite difference grid in the vertical are to use piecewise functions (a finite 
element or continuous functions (a spectral approach).' '-' The computational 
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advantages in terms of computer time and increased accuracy of spectral methods compared with 
a finite difference approach have been demonstrated by Davies and Stephens.I6 Also, the spectral 
method is ideally suited for the new generation of multiprocessor vector  computer^.'^' l *  

In this paper we consider two simple mathematical models. First, the closed rectangular North 
Sea basin used by Heaps" in his original research concerned with developing three-dimensional 
models and subsequently used by a number of authors2* 16,  19-23 as a 'benchmark' for various 
numerical methods is considered. Secondly, a simple point model driven by an oscillatory 
pressure gradient of tidal period is used to examine in more detail the stability of the numerical 
solution developed here. By this means the method is compared with a standard 'benchmark' 
solution of wind-driven flow in a sea region and pressure-driven flow of tidal period. 

2. MATHEMATICAL MODELS 

2.1. Three-dimensional equations 

The three-dimensional hydrodynamic equations solved by Heaps' for wind-induced motion, 
written in sigma co-ordinates o = z/h, are given by 

3 + 5 (h [I u do) + $ ( h [I u do) = 0, 
at ax 

where t is time, x, y and z are Cartesian co-ordinates and u and u are the x- and y-components of 
velocity. The acceleration due to gravity, g, and the geostrophic coefficient y are taken as 
constant, with p the vertical eddy viscosity, h the water depth and [ the sea surface elevation 
above its undisturbed value. 

The surface and bed boundary conditions in o-co-ordinates are given by 

with p the density of sea water. 

2.2. Point model in the vertical 

For a single-point model in the vertical the linear hydrodynamic equations are 
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In the model considered later, forced by oscillatory pressure gradients we express aP/ax and 
aP/ay as 

aP 
-=hh,ocos(ot), ax 
ap 
- = h, w cos (ot), 
aY 

(9) 

with h, and h, the amplitude of the oscillatory forcing of frequency o. 

2.3. Boundary conditions 

At the sea bed a slip condition is applied given by 

FB = kP UhQ, GB = k p  VhQ, (10) 

Q =  1, (1 1) 

(12) 

with k the coefficient of bottom friction. For linear slip 

while for quadratic slip 
Q = ( u f + V h )  2 112 . 

At the surface, for wind-induced flows F ,  and G,  are the externally applied wind stresses, while 

In the case of the closed rectangular basin a no-flow condition normal to the edges of the basin 
for tidal motion they are zero. 

is applied. 

2.4. Numerical solution 

Here we briefly outline the major steps in solving the hydrodynamic equations using the 
Galerkin method in the vertical. In particular, emphasis is placed upon the time discretization of 
the viscosity terms and bottom frictional terms. For clarity in the point model we consider 
equation (6) without rotation. Details of the application of the Galerkin method to the solution of 
the full three-dimensional equations have been given elsewhere''. 2o and will not be repeated here. 

Considering a single-point model in the vertical, the Galerkin method proceeds by expanding 
the velocity u as time-dependent coefficients A,(t) and basis functions f,(a) in the vertical: 

rn 

U =  C Ar(t).L(a). (13) 
r =  1 

Applying the Galerkin method to the solution of equation (6) without rotation, the equation is 
multiplied by each basis functionf, and the term involving the eddy viscosity is integrated by 
parts. Thus, neglecting rotation, from (6)  we obtain 

where k =  1,2, . . . , m. In deriving 14), we have expressed the eddy viscosity as 

p=a(t)@(o).  (15) 
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2.5. Eigenfunction basis set 

(modes) of an eigenfunction problem involving the vertical eddy viscosity profile. Thus 
The choice of basis functions in (14) is arbitrary, but here we will consider eigenfunctions 

with E the eigenvalues. 
An appropriate surface boundary condition for (16) is a natural boundary condition: 

At the sea bed a similar natural boundary condition can be applied: 

An alternative is to satisfy the bottom boundary condition (10) exactly. This can be accom- 
plished using (5) and (10). Thus substituting (5) into (10) gives 

In order to satisfy (19) for arbitrary coefficients A,  in expansion (13), it is necessary to solve the 
eigenvalue problem (16) subject to the boundary condition 

In a full three-dimensional model in which the magnitude of the bottom current Q varies with 
horizontal position and time, as can the eddy viscosity p, it would be necessary to solve the 
eigenvalue problem for each time step and grid point. This is clearly computationally impractical 
and for this reason the natural boundary condition (18) is preferable, although, as we will show, 
this can cause some numerical problems. 

Boundary condition (20) was used extensively by Heaps' ' for the case of linear bottom friction 
(i.e. Q = 1) and a flat-bottomed region. Here we consider the development of the solution of the 
Galerkin form of the hydrodynamic equations using both boundary conditions (18) and (20) in 
order to illustrate the computational stability of the two methods. 

To be consistent with Heaps," it is convenient to express the coefficients A, as 

with 

Thus, using a basis set of eigenfunctions satisfying the natural boundary condition (18) and 
using the orthogonality property of eigenfunctions, namely 

= 0, r # k,  
# O ,  r = k ,  
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with 
1 lo Ldo, 

equation (14) gives 

natural boundary condition 

F B  a% du ,  ap F ,  
~ = -ar + --f, (0) - --f, (1) - p u,. 

Ph dt ax p h  

48 1 

(24)  

The nature of the modes (Figure l(a)) in the case of the bottom boundary condition (18) is that 

E,=O, r =  1. (26) ar=O,  r = 2 , 3 , .  . .,m, 
Thus equation (25)  can be written as an equation involving the pressure gradient, 

and a set of equations 

In the case in which the bottom boundary condition is satisfied exactly (Figure 1 (b)) we obtain 

essential boundary condition 

aEr d u ,  ap F,  
-=- ar+- - f , (0 ) -FUr ,  r = l ,  2 , .  . . , * 
dt ax  ph 

r.2 r = 3  I * 4  r.5 

Figure 1. Profiles of the first five modes computed (a) using a zero-derivative boundary condition at the sea bed 
and satisfying exactly a bottom stress boundary condition, with (b) k = 0.002ms-', p = 0.0130m2s-' and 

(c) k = 004 ms-', p = 0.0130 mz SKI 
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It is important to note that the bed stress term does not appear explicitly in equation (29) since 
in this case the eigenvalue problem has been solved subject to boundary condition (20). 

3. TIME DISCRETIZATION AND NUMERICAL STABILITY 

In this section we consider various time discretizations of equations (25x29) and the associated 
stability conditions. 

3.1. Essential boundary condition 

terms, they do not involve Ur; then it is only necessary to consider the equation 
Considering initially equation (29), since terms a P / a x  and F J p h  are externally specified forcing 

in any stability analysis. 
A simple two-time-level discretization can be readily accomplished by 

with 8= 1.0 giving a fully implicit scheme and 8=0.0 an explicit scheme. 
The amplification factor A in the case of the time-differencing scheme (equation (31)) is given by 

In the case of the explicit scheme (8=0*0) this requires that 

T < 2h2/a&, (33) 
in order to remain stable. For typical values of h =  5 m, E,= 10 and mean eddy viscosity 
M =0.1 m2 s-' (see later) this means that t must be of the order of 25 s, which is clearly impractical. 
However, since all the modes are uncoupled, the viscosity term can be centred in time or 
evaluated at the higher time step without requiring any matrix manipulation, giving (equation 
(32)) an unconditionally stable scheme. 

Although an unconditionally stable scheme can be obtained with 8 = 0.5 (time centring) or 
8 = 1.0 (fully implicit), the amplification factor (equation (32)) for the two schemes is different in 
shallow water. Thus for illustrative purposes, taking E, = 10, a = 0.01 m2 s - l  and t = 100 s, for 
h = 1 m we obtain A = 0667 when 8 = 0.5 but A = 0.091 when 8 = 1.0. Consequently, in very 
shallow water (h = 1 m) evaluating the viscosity term at the higher time step damps the modes 
more heavily than time centring the viscosity term. However, in more typical water depths 
(h  = 10 m) the amplification factors are not significantly different: A = 0.905 when 8 = 0.5 and 
A = 0999 when 8 = 1.0. 

It is clear from this analysis that provided the term involving the eigenvalues E, is time centred 
or evaluated at the higher time step then the solution of the modal equations with the bottom 
boundary condition satisfied exactly will be unconditionally stable. 

3.2. Natural boundary condition 

Consider equation (28) in which the bed stress appears as a natural boundary condition. The 
stability condition for the viscous term is as above, but the analysis for the bed friction term is 
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more involved. Thus consider the equation 

dUr F ,  
- = - --f,(l). 
dt ph 

Substituting for F ,  from (10) and for U h  using expansion (13) gives 

(34) 

The complexity in equation (35) is that the bottom friction term couples together all the modes. 
If the summation in (35) were not present, then a simple stability condition could be developed 

as 

From (36) the amplification factor A is given by 

A = I[1-1(1 -0)T]/(l +Adt)I (37) 
where 1 = k Q b r  f,"(l)/h. 

In the case of the explicit scheme (0 = 0.0) this requires that 

5 2h/kQ$rf,"(1)* (38) 
For the boundary condition (18), typically f," = 1 and c # ~ ~  x 2. For very shallow near-coastal 

regions a typical strong current is of the order Q x 2 m s-  ', k = 0.005 m s- and h = 1 m, giving t of 
the order of 50 s or less, which in shallow near-coastal regions is prohibitive in terms of computer 
time. In theory, time centring or computing the frictional term at the higher time step would give 
an unconditionally stable scheme (e.g. equation (32)). However, as we will show later, this does not 
occur owing to the summation term in (35) which couples all the equations. 

In order to obtain an unconditionally stable scheme, all the equations must be considered, 
giving 

where dU/dt is a vector with rth element dUr/dt, I is the unit matrix, u ' + ~  is a vector with rth 
element u i f r  and K is a full matrix given by 

with f r  =f,(l). 
Obviously time centring or evaluating the right-hand side of (39) at a higher time step would 

involve the formation of a matrix K at each grid point and a matrix solution which is clearly 
impractical. 
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An alternative approach is to update each Ui in equation (35) with its value at a higher time 
level, as it becomes available, and to centre this in time by performing essentially an upsweep and 
downsweep solution. Thus 

upsweep, r = 1,2, . . . , m 

downsweep, r = m , m - I ,  . . . , 1 

with 8 determining the time level of Ur and upsweep and downsweep applied at alternative time 
steps. 

As will be shown later, this approach yields a computationally stable solution without matrix 
inversion. However, as will also be shown, with very large time steps in the case of low eddy 
viscosity some numerical damping can occur. 

4. NUMERICAL CALCULATIONS 

4.1. Wind-induced motion in the North Sea rectangle 

Wind-induced flow in a North Sea rectangular basin has now become accepted as a 
'benchmark' calculation for any new three-dimensional model development and has been used 
by a number of  author^."*^^*^^-^^ Th' is problem is therefore ideal for comparing the various 
numerical methods for time discretization when the bottom boundary condition is treated as a 
natural boundary condition as compared with when it is satisfied exactly. 

The closed rectangular North Sea basin ('the Heaps rectangle') has dimensions of 400 km in the 
x-direction and 800 km in the y-direction. A uniform staggered grid (Figure 2)19 was used in the 
horizontal with grid spacing Ax = 400/9 km and Ay = 800/17 km, with water depth h = 65 m, 
Coriolis parameter y=1*2x 10-4s-', with p=1025 kgm-3 and g=9*81 msp2. 

In order to readily compare the calculations with the earlier ones of Heaps," a linear slip 
condition was used, i.e. Q =  1 in equation (10). By this means both the natural and essential 
boundary conditions could be compared (Table I). However, to test the relative stability 
conditions of the methods, a range of k-values was used, from k = 0.002 m s -  (originally used by 
Heaps") up to an extremely high value of k=0*04 m s-' (designed to test the numerical stability 
of the method). Also, a range of eddy viscosity values was used, from p =00650 mz s- (a value 
employed by Heaps") down to a value of 0-0065 m2 s-l. In all cases the eddy viscosity was 
constant in the vertical. Motion in the rectangle was induced from a state of rest by a suddenly 
imposed wind stress of F,  = 0.0 and G, = - 1.5 Nm-'. A time step of 360 s was used in the 
calculations. 

Profiles of the first five modes, with p constant at 130 cmz s - l  and k increasing from 0002 to 
0.04 m s - l ,  computed initially subject to a zero-stress condition and then by satisfying boundary 
condition (20), are shown in Figure 1. It is clear from this figure that as k is increased, the modes, 
particularly the higher modes, show a marked reduction in the near-bed region with increasing 
shear in this layer. 
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Figure 2. North Sea basin used in the calculation: 0, [-point; + , u-point, x , u-point 

Modes computed subject to the natural boundary condition (18) are of course independent of 
the value of k and have zero vertical derivative at the sea bed (Figure l(a)). A consequence of this 
is that they are not highly sheared in the sea bed region. However, as we will show later, they do 
yield accurate current profiles and are the only satisfactory means of including a quadratic form 
of friction within the model. Recently, Davies et ~ 1 . ' ~  have shown that modes of this form, where 
the first mode is the only one which contributes to the depth mean flow, are ideal for solution 
using time-splitting algorithms on multiprocessor vector computers. 

It is evident from the analysis presented in Section 2 (equation (29)) that when the bottom 
boundary condition is satisfied exactly, the friction coefficient k does not appear in the hydro- 
dynamic equations. However, its effect is included within the eigenvalue, the magnitude of which 
increases as k increases (see Table 11). 

In the case of the natural boundary condition the bottom friction term appears explicitly in the 
equations and increasing k has no influence on the eigenvalues. It is only the bottom stress term 
which damps the first mode. 



486 A. M. DAVIES A N D  J. N.  ALDRIDGE 

Table I. Values of p and k used in the various calculations and the stability of the solution depending upon 
the use of an essential (viscosity time-centred) or natural boundary condition. A time step of 360 s was used 

in the calculations 

Stable solution 

Natural BC 

Calc. p (m2s-') k (ms-') 

Essential BC Bottom 
Viscosity friction at 
a t  0 = 0.5 0 = 1 or 0.5 

Viscosity 
at 0 = 1 or 

0 5  
Time 
sweep 

0.0650 0.002 
0.0650 0.02 
0.0130 0.002 
0.0 1 30 002 
0.0130 0.04 
0.0065 0.02 
0.0065 0.04 

Yes Yes 
Yes No 
Yes Yes 
Yes N o  
Yes No 
Yes No 
Yes No 

Yes 
No 
Yes 
N o  
No 
No 
No 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Table 11. The first five eigenvalues normalized with respect to the eddy viscosity, computed with 
p = 0.0130 m2 s - l ,  for a range of k-values 

Essential BC 
Mode number 
r k = 0.002ms-' k = 0.02ms-' k = 0.04ms-' NaturalBC 

2.0420 2.4 1 80 2.4430 0.0 
18.542 21.772 21.987 9.870 
52.244 60-466 61.074 39.478 

104.04 118.527 119.706 88.826 
174.6 10 195.944 197.880 157.914 

It is clear from Table I11 and the previous analyses that by centring the viscosity term in time, 
an unconditionally stable scheme is obtained for all values of p and k used in the calculation when 
the bottom boundary condition is treated as an essential boundary. However, in the case of the 
bottom boundary condition treated as a natural boundary condition, time centring or evaluating 
the viscosity and frictional terms at the higher time step did not lead to increased stability when 
the bottom friction coefficient was increased above 0.002 m sC1 with a time step of 360 s, and 
wind-induced currents in the rectangular basin quickly became unstable. However, by using the 
time sweep approach, a stable algorithm could be obtained with a time step of 360 s and high 
k-values, giving a physically realistic wind-induced flow field in the basin, in good agreement with 
that found using an essential boundary condition (Table 111). 

To check that the time sweep algorithm had not achieved stability by excessive damping of the 
solution, current profiles at the centre of the basin, computed using 10 modes, 30 h after the onset 
of the wind field were determined (Table 111). It is evident from this table and from plots of current 
profiles (Figure 3) that there were no major differences between currents computed satisfying the 
bottom boundary condition exactly and those determined using a natural boundary condition 
with the sweep method of solution. Current values and profiles computed with the sweep method 
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Figure 3. Profile of u-current at point A in the centre of the basin 30 h after the onset of the wind field, computed 
with p = 00130m2s- '  and k = 0902ms-' ,  with an essential boundary condition (-) and a natural boundary 

condition ( -  - - - -) 

were also in excellent agreement with published values determined by other methods, e.g. grid 
box, Legendre or Chebyshev polynomials.' 

4.2. Oscillatory flow 

In the previous series of calculations, current profiles were induced by wind forcing. It is clear 
from equations (27) and (28) that in the case of wind-forced motion and a natural bottom 
boundary condition each mode is excited by the wind stress and damped by the bottom friction 
and eddy viscosity (excluding the first mode, which is only damped by the bottom friction).20 

Although it is instructive to compare current profiles for the North Sea rectangle generated by 
this means, a more rigorous test of the model is to compare the performance of the sweep method 
with other methods when motion is generated by an oscillatory pressure forcing alone. It is 
apparent from equations (27) and (28) that in the absence of an external wind stress an oscillatory 
pressure gradient only drives the first mode directly, with the higher modes which produce the 
current structure being forced by the bed stress-a problem that provides a more rigorous test of 
the sweep method of solution. 

As in the previous series of calculations, ranges of eddy viscosity values and bottom friction 
coefficients were used, but in this case the water depth was set at a low value, initially 5 m, so that 
frictional effects would reach the surface. Also, a range of time steps was used in order to 
determine how much inaccuracy was introduced by using a 'long' time step. An expansion of 
10 modes in the vertical was used in all calculations. 

Eddyuiscosiryp =0.0130m2s-' .  Initialcalculations(p=0~0130m2s-', k=0.002ms-') with 
a time step of 180 s showed little difference between the amplitude and phase of the surface and 
bottom currents computed using both the original method and the sweep method, with both 
remaining stable (Table IV). However, when the bottom friction coefficient was increased to 
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Table IV. Influence of evaluating friction and viscosity at various time levels with and without the sweep 
method upon current amplitude and phase in a water depth h = 5 m with p = 130 cm2 s- ' 

Analysis 

Surface Bed 

k (ms-') T (s) 8 (fric) 0 (visc) Sweep h, (cms-I) gu (deg) h, (cms-') g. (deg) 

0.002 180 1 .o 1 .o No 45.5 203.4 33.3 202.8 
180 1 .o 1 .o Yes 45.1 204.7 32.9 203.7 

0.02 18 0.0 0 5  No 16.8 188.7 3.6 187.4 
45 0.5 0.5 No Unstable 542 

Unstable 847 45 1 .o 1 .o No 
180 1 .o 1.0 Yes 16.7 190.7 3.6 190.5 
360 1 .o 1.0 Yes 16.5 193.3 3.5 194.0 

0.03 18 0.0 0.0 No 15.6 188.4 2.4 187.1 

180 1 .o 1 .o Yes 15.5 191.4 2.4 191.6 
360 1 .o 1 .o Yes 15.2 195.1 2.3 196.7 

45 1 .o 0.0 No Unstable 252 

0.05 180 1 .o 1 .o No Unstable 802 
360 1 .o 1 .o No Unstable 682 
180 1 .o 1 .o Yes 14.4 193.3 1.4 194.6 
360 1.0 1.0 Yes 13.9 199.2 1.4 202-9 

0.02 ms-', the non-sweep method only remained stable with a time step of 18 s even if the 
viscosity and friction term for the rth mode (equation (36)) were evaluated at the higher time step. 
Applying the sweep method (equations (41) and (42)), however, yielded a stable solution. With a 
time step of the order 360 s the surface current, although damped, was determined to an 
acceptable level of accuracy (compared to the 18 s time step). 

Increasing the bottom friction to 0.03 ms-', a stable solution could still be obtained with the 
non-sweep method with a time step of 18 s, although with an increased value (45 s) the solution 
was unstable after 25 time steps. However, the sweep method remained stable and accurate 
(Table IV). With the bottom friction at 0.05 m s-' the non-sweep method with a time step of 18 s 
was also unstable. Only the sweep method appeared stable with such high friction coefficients. 

Eddy viscosity p =0.1300 mz s-l. In a second series of calculations, to examine the influence of 
the eddy viscosity upon the stability of the solution, p was increased to 0.1300 m2 s- '. From the 
stability analysis presented earlier (equation (33) for five modes, c5 z 160), if the viscosity term 
was evaluated at the lower time step then the time step would have to be below 2 s, which was 
borne out by calculation. However, with the bottom friction and viscosity terms evaluated at the 
higher time step, both the non-sweep and sweep methods remained stable, with no significant 
difference between the computed solutions (see Table V). Ten modes were used in these calcu- 
lations. This suggests that when the viscosity term is large and evaluated at the higher time step, 
the modal damping introduced is sufficient to stabilize any instability due to bottom friction. 
Also, with such high viscosity any numerical damping is negligible compared with the physical 
damping. To test this, a series of calculations was performed with p reduced to 00013 m2 s- '. 

Eddy viscosity p = 0.0013 mz s-'. With p = 0.0013 m2 sC1 and k = 002 m s - l  the non-sweep 
method using 10 modes in the vertical was only stable with a time step of the order of 18 s (see 
Table VI). The sweep method did, however, remain stable, although as the length of the time step 
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Table V. As Table IV but with p = 1300 cm2 s- 

Analysis 

Surface Bed 

Amplitude Phase Amplitude Phase 
k (ms-') T (s) B (fric) 0 (visc) Sweep (cms-') (deg) (cms-') (ded 

0.02 18 1.0 1.0 No 4.96 182.7 3.62 182.7 
180 1 .o 1 .o Yes 4.96 182.9 3.62 182.9 
360 1 .o 1 .o Yes 4.96 183.3 3.63 183.3 

0.03 180 1 .o 1 .o Yes 3.76 182.4 2.42 182.4 
360 1 .o 1 .o Yes 3.75 182.9 242 18 3.0 

0.05 180 1 .o 1 .o Yes 2.8 1 182.2 1.45 182.2 
3 60 1 .o 1 .o Yes 2.81 182.9 1.45 183.1 

Table VI. As Table IV but with p = 0.0013 m 2 s - '  

Analysis 

Surface Bed 

Amplitude Phase Amplitude Phase 
k (ms-')  t (s) B (fric) 8 (visc) Sweep (cms-I) (deg) (cms-') (ded 

0.02 18 0.5 0.5 No 89.5 231.0 2.50 2 17.0 
18 1 .o 0.5 No 87.3 232.2 2.40 217.3 
45 1 .o 1 .o Yes 864 232.1 2.36 221.6 
90 1 .o 1.0 Yes 81.6 234.1 2.21 226.3 

180 1.0 1 .o Yes 73.3 237.5 1.97 235.1 
360 1.0 1 .o Yes 60.5 242.7 1.58 250.9 

180 1.0 1 .o Yes 66.6 240.5 1.3 1 243.2 
360 1.0 1 .o Yes 51.3 247.1 0.96 265.0 

180 1 .o 1 .o Yes 55.6 245.5 0.58 259.0 
3 60 1.0 1 .o Yes 38.7 253.4 0.4 1 292.5 

0.03 180 1 .o 1 .o No Unstable 262 

0.05 180 1 .o 1 .o No Unstable 2 2 ~  

was increased, the magnitude of the amplitude of the surface current was reduced, indicating 
significant numerical damping (Table VI). With increasing bottom friction the sweep method 
remained stable, although it is evident from Table VI that increasing the time step from 180 to 
360 s introduces numerical damping. 

Although this test problem is numerically very interesting, it is probably not physically very 
realistic in that in shallow water, strong currents flowing over a rough bed (a high-friction regime) 
would generate significant turbulence in the water column (a high eddy viscosity value). 

Eddy viscosity p = 0.0130 m2 s-', water depth h = 1 m.  In a final series of calculations the water 
depth h was reduced to 1 m, the minimum water depth that it is reasonable to resolve in a 
numerical model before drying occurs. It is evident from Table VII that in such a region the non- 
sweep method even with z = 18 s becomes unstable after about 100 time steps. Solutions with the 
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Table VII. As Table IV but in a water depth h = 1 m with p = 0.0130 m2 s-'  

Analysis 

Surface Bed 

Amplitude Phase Amplitude Phase 
k (ms-') z (s) B (fric) B (visc) Sweep (cms-') (deg) (cm s - l )  (deg) 

0.02 18 1.0 
18 0.5 

180 1 .o 
360 1 .o 

0.03 180 1 .o 
360 1 .o 

0.05 180 1 .o 
360 1 .o 

0.5 No 
0.5 No 
1 .o Yes 
1 .o Yes 
1 .o Yes 
1 .o Yes 
1 .o Yes 
1 .o Yes 

Unstable 1042 
Unstable 772 

1.26 181.3 0.73 181.4 
1.26 181.9 0.73 1820 
1.02 181.4 0.49 181.6 
1.02 182.3 0.48 182.6 
0.83 181.8 0.29 182.1 
083 183.3 0.29 184.0 

sweep method, however, remained stable, although owing to the high bed damping the currents 
were very small. 

Although the problem is of some interest from the numerical point of view, physically the 
currents are so low that it would be impossible to measure them with any degree of accuracy. 

It is apparent from this series of calculations that when the frictional coefficient is low, the non- 
sweep method remains stable with time steps of the order of 180s. However, with increased 
friction coefficient and reduced eddy viscosity a time step of the order of 18 s was required to 
maintain stability with the non-sweep method, although the sweep method remained stable. 

5. CONCLUDING REMARKS 

It is evident from the mathematical analysis presented in this paper that when the hydrodynamic 
equations are solved using a set of modes satisfying a slip bottom boundary condition, a stable 
time-stepping algorithm can be readily developed by centring the viscosity term in time or 
evaluating it at the higher time level. Such a method is, however, restricted to a linear form of 
bottom friction. Also, in a 'real world model' incorporating variations in bottom topography the 
value of k h / p  must be constant2' unless a different basis set of functions is to be used at each grid 
point with an associated high computational cost. 

Physically a quadratic form of bottom friction is more appropriate. However, in this case the 
bottom friction has to be included as a natural boundary condition. It is evident from the analysis 
presented here and the numerical calculations that evaluating the viscosity term centred in time 
or at the higher time level does not yield a stable solution when the bottom friction is high, the 
eddy viscosity is low and the water depth is shallow. However, the new numerical algorithm 
developed here, in which the modal contribution to the bed stress is updated as modal coefficients 
at the higher time level are computed, in a 'sweep form' does appear to yield a stable numerical 
solution at significantly longer time steps (of the order of 360 s compared wth 18 s) than with a 
non-sweep solution. 

A comparison of computed currents using the sweep method with z = 360 s and the non-sweep 
method with z = 18 s clearly demonstrated the accuracy and stability of the approach. However, 
for low eddy viscosity values the sweep method with a long time step does introduce some 
numerical damping. Although the case of low eddy viscosity is numerically interesting, it is not 
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physically very realistic. Consequently, provided a time step of the order of 18G360 s is used in a 
‘real world model’, a stable accurate solution should be obtained using the sweep method 
developed in this paper. 

The modal method developed here has recently been combined with a turbulence energy 
approach.  calculation^^^ have demonstrated that the modal method is as accurate as a 
turbulence energy approach at a fraction of the computational cost. Also, modal methods can 
generate the higher tidal harmonics and with the addition of functions to represent highly sheared 
surface layers25 can accurately reproduce the surface currents. 

The sweep algorithm developed in this paper has proved to be particularly stable in a three- 
dimensional model of flow in a near-coastal shallow region of the Irish Sea, including a drying 
condition. The model is presently being used to examine the physical oceanography of this region 
and results will be reported subsequently. 
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